Nesic/Trocha/Koos WS 15/16

Problem Set 8 Optical Waveguides and Fibers (OWF)

will be discussed in the tutorial on January 13, 2016

Problem 1: Linearly polarized modes (LP) in a step-index fiber.

The modes of a step-index fiber can be calculated analytically in an exact form, leading to a classification in $\text{TE}_{0,\mu}$, $\text{TM}_{0,\mu}$ and hybrid modes $(EH_{\nu,\mu})$ and $HE_{\nu,\mu}$. When looking for exact solutions, one can find a differential equation for the $\underline{\mathcal{E}}_z$ and $\underline{\mathcal{H}}_z$ components, from which the transverse components can be derived. A simplified approximation can be used under the assumption that the mode is weakly guided $(n_1 \to n_2)$ and has a dominant linearly polarized transverse field component, which without loss of generality we denote as $\underline{\mathcal{E}}_x$, while assuming $\underline{\mathcal{E}}_y = 0$.

Because of the assumption of weak guidance, the scalar Helmholtz equation can be used:

$$\nabla^2 \underline{\Psi}(r,\varphi) + \left(k_0^2 n^2 - \beta^2\right) \underline{\Psi}(r,\varphi) = 0, \tag{1}$$

where $\underline{\Psi}(r,\varphi)$ denotes the $\underline{\mathcal{E}}_x$ component of the mode.

- a) Write Eq. (1) in cylindrical coordinates.
- b) Separate the variables, i.e., assume that the solution can be written in the form $\underline{\Psi}(r,\varphi) = g(r)h(\varphi)$. Insert this ansatz into the result from part a), separate it into a sum of two expressions where one depends exclusively on r and the other exclusively on φ . Show that $\sin(\nu\varphi)$ and $\cos(\nu\varphi)$ are solutions for the φ -dependent part. Why must ν be an integer?
- c) Insert the sinusoidal solution for $h(\varphi)$ into the result of part a) and show that the differential equation for g(r) can be written as:

$$r^{2} \frac{\partial^{2} g(r)}{\partial r^{2}} + r \frac{\partial g(r)}{\partial r} + \left[\left(k_{0}^{2} n_{i}^{2} - \beta^{2} \right) r^{2} - \nu^{2} \right] g(r) = 0, \tag{2}$$

where n_1 is the core index and n_2 is the cladding index.

Using the fact that Eq. (2) is solved by Bessel functions and modified Bessel functions, the total solution of Eq. (1) can be written as:

$$\underline{\Psi}(r,\varphi) = \begin{cases} AJ_{\nu}\left(u\frac{r}{a}\right)\cos(\nu\varphi + \psi) & \text{for } 0 \le x \le a\\ A\frac{J_{\nu}(u)}{K_{\nu}(w)}K_{\nu}\left(w\frac{r}{a}\right)\cos(\nu\varphi + \psi) & \text{for } a < x \end{cases}$$
(3)

where J_{ν} is the Bessel function of the first kind of order ν , K_{ν} is the decaying modified Bessel function of order $\nu=0,1,2,...,\,\psi\in\{0,\frac{\pi}{2}\},\,u=a\sqrt{k_0^2n_1^2-\beta^2},\,w=a\sqrt{\beta^2-k_0^2n_2^2}$. In this relation we assumed that $\underline{\Psi}(r,\varphi)$ is continuous at r=a.

d) Why is this assumption legitimate?

Starting from the equation

$$\nabla \cdot \mathbf{D} = 0 \tag{4}$$

it is possible to show that in the limit $n_1 \to n_2$ the derivative $\frac{\partial \Psi}{\partial r}$ must be continuous as well.

e) Use this fact to derive the characteristic equation for LP-modes:

$$\frac{uJ_{\nu}'(u)}{J_{\nu}(u)} = \frac{wK_{\nu}'(w)}{K_{\nu}(w)} \tag{5}$$

Nesic/Trocha/Koos WS 15/16

f) We want now to simplify Eq. (5) by getting rid of the derivative of the Bessel function. For this purpose, make use of the recursive relations,

$$J_{\nu}'(u) = +J_{\nu-1}(u) - \frac{\nu}{u}J_{\nu}(u) \quad , \tag{6}$$

$$J'_{\nu}(u) = +J_{\nu-1}(u) - \frac{\nu}{u}J_{\nu}(u) \quad , \tag{6}$$

$$K'_{\nu}(w) = -K_{\nu-1}(w) - \frac{\nu}{w}K_{\nu}(w) \quad , \tag{7}$$

and show that Eq. (5) implies:

$$\frac{uJ_{\nu-1}(u)}{J_{\nu}(u)} = -\frac{wK_{\nu-1}(w)}{K_{\nu}(w)}$$
(8)

For each index ν the latter equation can be solved for β , as done already for the slab waveguide. Since the Bessel function oscillates, different solutions are obtained and can be classified by means of a new integer, μ . The normalized cut-off frequencies $V_{\mu,\nu,c}$ of the different modes are obtained from Eq. (8) when we set $w \to 0$ (and simultaneously $u \to V = ak_0\sqrt{n_1^2 - n_2^2}$). From standard properties of the Bessel functions, it can be proven that $\lim_{w\to 0} \frac{wK_{\nu-1}(w)}{K_{\nu}(w)} = 0$. The normalized cut-off frequency of the $LP_{\nu,\mu}$ mode $(\mu = 1, 2, 3...)$ is hence determined by the μ -th zero $j_{\nu-1,\mu}$ of the Bessel function $J_{\nu-1}(u)$.

$$V_{\mu,\nu,c} = j_{\nu-1,\mu} \tag{9}$$

g) A typical standard single mode fiber has the following specifications: $a = 4.1 \,\mu\text{m}$, $\Delta = \frac{n_1^2 - n_2^2}{2n_1^2} =$ 0.0035 and $n_1 = 1.41$. This fiber always supports the fundamental mode LP_{0,1}. The next higher order mode is the LP_{1,1}. What is the minimum wavelength for which the fiber is single-mode? Hint: $j_{0,1} \approx 2.4048$.

Questions and Comments:

Aleksandar Nesic Building: 30.10, Room: 2.32-2 Phone: 0721/608-42480 aleksandar.nesic@kit.edu

Philipp Trocha Building: 30.10, Room: 2.32-2 Phone: 0721/608-42480 philipp.trocha@kit.edu